
A Case Study of Clock Synchronization in Flexray

Alexander Hanzlik
Vienna University of Technology, Real-Time Systems Group

Treitlstr. 1-3/182-1, 1040 Vienna, Austria
hanzlik@vmars.tuwien.ac.at

Abstract

This paper presents a case study on the performance of a
distributed clock synchronization algorithm used in Flexray,
a communication protocol designed to meet the require-
ments of dependable, fault-tolerant real-time applications.
The Flexray industry consortium drives forward the stan-
dardization of a fault-tolerant communication system for
advanced automotive applications. In this case study we
will analyze two different configurations for typical automo-
tive applications by means of simulation. The focus of the
simulation experiments is the assessment of performance
and stability of the Flexray clock synchronization algorithm
in the presence of varying clock drift rates. For the analysis
we will use SIDERA, a simulation model for time-triggered
distributed systems.

1. Prerequisites and Assumptions

1.1. System Structure

For the considerations in this paper, we assume that a
distributed real-time system can be built by repetitive useof
the following components:

Node. A computational unit that executes a part of a dis-
tributed application. Each node maintains a local clock.

Communication network. A shared communication re-
source connecting nodes.

Cluster. A set of spatially separated nodes that exchange
messages via a communication network and that execute a
distributed application in a cooperative manner.

1.2. Local Clocks

A local clockis a device for time measurement that con-
tains a counter and a physical oscillation mechanism (e.g.

Figure 1. System structure

a quartz oscillator) that periodically generates an event to
increase the counter. This event is called themicrotick of
the local clock. The counter can be modified such that the
speed of the local clock can be increased or decreased by
application of anadjustment value.

1.3. Global Time

In time-triggered systems, all actions (i.e. the issuing of
control signals to objects in the environment) are derived
from a global notion of time which is established among
all nodes by periodical execution of a distributedclock
synchronization algorithm([9], [6], [13], [11], [3], [1]).
Flexray utilizes the concept ofmicroticksand macroticks
[8]. Microticks correspond to the local oscillator ticks at
each node, while macroticks represent the global notion of
time used to trigger actions and to order events. Each node
generates a macrotick by selecting a number of microticks
and synchronizes its macrotick by dynamically increasing
or decreasing the number of microticks per macrotick, ac-
cording to the clock state correction term that is deliv-
ered periodically by a clock synchronization algorithm. All
nodes adjust their local clocks at the same point in global



time. The internally synchronized global time proceeds in
units of macroticks. The macrotick counter at each node
represents the node’s view of global time (cluster time).

1.4. Communication

In distributed systems with a shared communication re-
source the access to the communication medium has to be
regulated such that all nodes are able to deliver messages
within an upper bound in time. In Flexray the access to
the communication medium is controlled by a collision-
free, Time Division Multiple Access strategy (TDMA).
Each node traverses a (locally stored) globalcommunica-
tion schedulein a cyclic manner. In this communication
schedule, realtime is divided intoslots. Each node is as-
signed one or more slots during which it is allowed to
send a message orframe. The send time of the frame (in
macroticks) is referred to as theaction pointof the node.

Figure 2 shows the principle of operation.

12:00 3:00 5:00 9:00 12:00 3:00

assigned 
to node0

assigned
to node1

assigned
to node2

assigned
to node3

assigned
to node0

TDMA round n

slot0 slot1 slot2 slot3 slot0

TDMA round 
(n+1)

TDMA round
(n-1)

assigned
to node3

slot3

Figure 2. TDMA scheme

1.5. Clock Synchronization

Synchronization is the action of making different pro-
cesses in a computer network or different parts of a circuit
or different clocks to agree on a same time reading. In the
context of multiprocessor and distributed systems, synchro-
nization ensures that operations occur in the logically cor-
rect order, and it allows the establishment of causal implica-
tions between events in different computational units [12].

Clock synchronization is the periodic activity of determi-
nation and application of aclock correction termfor each
local clock to achieve agreement among an ensemble of
clocks.

Every node periodically performs the following steps:

Step 1: Read the values of a well-defined ensemble of
other clocks (remote clock reading). Due to the presence
of possibly varying communication delays (jitter) and due
to the existence of clock drifts, getting an exact knowledge
of a remote clock value is not feasible. Thus, only estimates
of the remote clock values can be acquired [1].

Step 2: Determine a clock correction term according to
the remote clock readings obtained in Step 1.

Step 3: Apply the clock correction term obtained in Step
2 to the local clock (clock adjustment). The clock can be
corrected by discrete adjustment (state correction), conti-
nous adjustment (rate correction) or a combination of the
two. Flexray uses a combination of clock state and clock
rate correction.

2. Flexray protocol mechanisms

2.1. Communication

Flexray uses a TDMA access control scheme to arbitrate
the communication medium. In TDMA protocols each node
is permitted to periodically utilize the full transmissionca-
pacity of the medium for some fixed amount of time called
TDMA slot which is the interval from one transmission start
to the next one.

Communication cycle. The Flexray communication cy-
cle consists of a mandatorystatic segment, an optionaldy-
namic segment, an optionalsymbol windowand a manda-
tory network idle time (NIT)(Figure 3).

Figure 3. Flexray communication cycle

The static segment contains a configurable number of
static slots, each slot assigned to one node via aframe ID.
All static slots have the same duration (in macroticks) (Fig-
ure 4). Within the static segment a static TDMA scheme
is applied to coordinate transmissions. The network idle
time contains the remaining number of macroticks within
the communication cycle not allocated to the static segment,
dynamic segment, or symbol window and serves as a phase
during which the node calculates and applies clock correc-
tion terms.

Within the dynamic segment a dynamic mini-slotting
based scheme is used to arbitrate transmissions; the duration
of communication slots may vary in order to accommodate
frames of varying length. Within the symbol window a sin-
gle symbol may be sent; the duration of the symbol window

2



Figure 4. Flexray static segment

is a global constant for a given cluster. Both the dynamic
segment and the symbol window are not used for clock syn-
chronization and are therefore not regarded for the follow-
ing considerations. For more information regarding these
segments refer to [5].

2.2. Remote clock reading

Flexray uses thea-priori known action points of nodes
(Section 1.4) for remote clock estimation. The communi-
cation schedule contains dedicated slots used for clock syn-
chronization. Frames sent in these slots are referred to as
sync frames. During each slot, the time difference between
the expected arrival time (the sender’s action point from the
communication schedule) and the actual arrival time is mea-
sured in locally used microticks at the receivers1. Time dif-
ferences obtained from sync frames are used for calculation
of the clock correction terms.

Sync frames are sent during the static segment of the
communication cycle. Every node measures and stores up
to 16 time differences (in microticks) between the expected
and the observed arrival times of all sync frames received.
Only valid sync frames are used for clock correction term
calculation.

2.3. Calculation of the clock correction terms

Flexray uses a combination of clock state and clock rate
correction (Section 1.5) by periodical determination and ap-
plication of astate correction termand arate correction
term.

The Fault-Tolerant Midpoint (FTM) algorithm is used
for clock state correction. The valid time differences are
sorted, the k largest and the k smallest values are discarded.
The largest and the smallest of the remaining values are
averaged for the calculation of the midpoint value which
serves as the state correction termvOffsetCorrectionthat in-
dicates by how many microticks the node’s communication
cycle length should be changed [5]. The term k is depen-
dant on the number of values used for calculation (k=0 for

1The measured deviation may be corrected by a known minimum prop-
agation delay of the communication network.

up to 2 values, k=1 for up to 7 values, k=2 for more than 7
values).

Figure 5. Flexray - clock state and clock rate
correction

The rate correction term is determined by comparing the
corresponding measured time differences from two succes-
sive communication cycles. A set of values is built such that
pairs of previously stored deviation values are selected and
the difference between the values within a pair is calculated
(two values belong to a pair if both values indicate valid
time differences that stem from sync frames received in the
same slot on consecutive communication cycles). The FTM
algorithm (see above) is executed on this set of values. The
result is a clock rate correction termvRateCorrectionthat
indicates by how many microticks the node’s communica-
tion cycle length should be changed.

2.4. Clock adjustment

Flexray uses the clock correction values to dynamically
adjust the number of microticks in each macrotick.

Clock state correction takes place during the network
idle time NIT (Section 2.1) in odd communication cycles
(i.e. every second communication cycle, Figure 5). Clock
rate correction takes place during the entire communication
cycle.

The clock correction terms are applied such that they are
uniformly spread over a wholerelevant time range. The rel-
evant time range forvOffsetCorrectionis the time between
gOffsetCorrectionStartin the NIT and the start of the next
communication cycle. ForvRateCorrection, the relevant
time range is the whole communication cycle.

3. Simulation experiments

We investigate the performance of the Flexray clock
synchronization mechanism by means of simulation ex-
periments using SIDERA, a simulation model for time-
triggered distributed systems. SIDERA allows the simu-
lation of single- and multi-cluster time-triggered systems

3



including real-time protocol services like system startup,
communication, clock synchronization, membership ser-
vice and protocol error detection and handling. A failure
simulation module allows to investigate the stability of the
systems under investigation in the presence of node failures.
More information about SIDERA can be found in [7].

3.1. System configuration

We use two different system configurations for typical
automotive applications. Each configuration consists of one
cluster with 15 nodes.

3.1.1 Node configurations

The node configurations are equal for both clusters (Table
1). The nodes are numbered from0 to 14.

Macrotick duration 1 µsec (10−6
sec)

Microticks per macrotick 40
Nominal FrequencyFs 40Mhz
Frequency Tolerance∆f(0) 10 ppm (10−5 )
Frequency Stability∆zf (∆t) 200 ppm (2 × 10

−4 )
Frequency Margin
∆f(0) + ∆zf (∆t) 210 ppm (2 , 1 × 10

−4 )
ρi(t) Drift rate node i at time t

Table 1. Node parameters and oscillator char-
acteristics

Local clock characteristics. The macrotick has a dura-
tion of 1 microsecond. The number of microticks per
macrotick is 40. It is derived from the nominal frequency of
the physical oscillation mechanism of the local clock.

Oscillator characteristics. Table 1 shows the character-
istics of the physical oscillation mechanism (Section 1.2)
for all nodes. Thenominal frequencyFs is the intended
number of oscillations per second (40Mhz). Thefrequency
tolerance∆f(0) 2 is a measure for the deviation from the
nominal frequencyFs at startup time3; it is a symmetric
interval aroundFs (i.e. the maximum deviation from the
nominal frequency at startup timet = 0 is ∆f (0 )

2
).

Drift rate. The drift rateρi defines the deviation of the
frequency of nodei from the nominal frequencyFs in parts
per million (ppm). This is equal to the deviation of clocki

2In crystal oscillator data sheets,∆f(0) is also known ascalibration
toleranceat a given temperature (e.g. 10 ppm at 25◦C).

3The startup time is the point in time from which on the oscillator is
used for time measurement.

from a perfect clock in seconds per second. Different clock
drift rates mean different microtick durations.

For the simulation experiments, the drift rateρi of node
i at startup time is equal to

ρi(0 ) =
∆f (0 )

2
− i

∆f (0 )

n − 1
(1)

Equation 1 ensures that that the node drift rates are
equally spread over the whole frequency tolerance inter-
val ∆f(0) (ρ0 = +5e − 6, ρ1 = +4, 286e − 7, ..., ρ14 =
−5e − 6).

The drift rate of node i at time t is equal to

ρi(t) = ρi(0 ) + zfi (t), zfi (t) <= ∆zf (∆t) (2)

The relation between frequencyfi and drift rateρi of
node i at time t is

fi(t) = Fs (1 + ρi(t)) (3)

The microtick duration at nodei is 1
fi(t)

. At time t, the
local clock of nodei is fast if ρi(t) > 0 andslow if ρi(t) <

0.
It can be seen from Equation 1 and from Equation 3 that

at startup time node 0 has the fastest clock and that node 14
has the slowest clock.

Figure 6. Oscillator tolerance intervals

There are several influences on oscillator frequency. A
major influence is that of operating over variations in tem-
perature [2] besides other influences like gravity, vibration,
electromagnetic interference or aging. The functionzf (t)
(Equation 2) corresponds to the sum of all these influences
on oscillator frequency at timet. The frequency stabil-
ity ∆zf(∆t) denotes the maximum deviation from the fre-
quency at startup time during operation.

Figure 6 shows the relation between nominal frequency
Fs, frequency tolerance∆f(0) and frequency stability
∆zf (∆t).

3.1.2 Cluster configurations

Table 2 summarizes the parameters for cluster 1 and cluster
2. Static slots are numbered from0 to m − 1 (m being the

4



number of static slots for each cluster configuration). Clock
sync slots are slots during which sync frames are sent.

Cluster 1 Cluster 2
Number of nodesn 15 15
Communication cycle length 5000 MT 5000 MT
Static Segment 3026 MT 3479 MT
Dynamic Segment 1960 MT 1498 MT
NIT 14 MT 23 MT
Static Slots 89 71
Static Slot length 34 MT 49 MT
Clock sync nodes 0,5,10,14 0,5,10,14
Clock sync slots 61, 71, 81, 89 0,23,47,70

Table 2. Cluster parameters

Simulation time Tsim. All simulation experiments have
a durationTsim of 100 communication cycles.

3.1.3 Prerequisites and Assumptions

Notation. The following notational conventions will be
used in the course of the following considerations:

• t always denotes a point in simulation time:
t ∈ [0 ,Tsim ].

• tcx
denotes the start time of communication cycle x

(e.g.tc10
).

• tNIT y
denotes the start of network idle time of com-

munication cycle y (e.g.tNIT 10
).

• i, j always denote node numbers (e.g.ρi is the drift
rate of nodei).

• The drift rateρi is given in s/s.

• e ± y will be used to signify×10±y (e.g. 7e-4 means
7 × 10−4).

Offset. TheoffsetC is the maximum deviation of the mi-
crotick countersmt of two nodes in cluster C at time t.

offsetC (t) = max (mti(t)) − min(mti(t)) (4)

Precision. The precision is the maximum offset of any
two nodes in clusterC observed during simulation time.

ΠC = max (offsetC (t)) (5)

Performance. PrecisionΠC is used as a performance
measure for the clock synchronization algorithm: perfor-
mance improves as the precision values decrease.

Stability. The clock synchronization algorithm isstable
with regard to a given cluster configuration if precisionΠC

is less than the nominal duration of a macrotick (40 mi-
croticks for the configurations used in the course of the sim-
ulation experiments):

ΠC < 40 (6)

The chosen stability criterion is based on thereasonable-
ness condition[8] which demands that all local implemen-
tations of the global time satisfy the condition

g > ΠC (7)

for the granularityg of the global time base. This con-
dition ensures that the synchronization error is bounded to
less than the duration between two macroticks.

Generally, the stability criterion has to be chosen accord-
ing to the demands of the distributed application. In appli-
cations with less stringent synchronization requirementsa
softer stability criterion than the reasonableness condition
may be sufficient.

Initial synchronization. Initial synchronization among
an ensemble of clocks is usually established using a startup
algorithm [14]. In Flexray, the initial clock rate correc-
tion termvRateCorrectionat a node is determined from the
reception times of two consecutivestartup framesduring
the cluster startup phase before the node becomes opera-
tional (and starts execution of the clock synchronization al-
gorithm). That means that nodei becomes operational with
an initial value ofvRateCorrectionthat compensates for the
drift rate of the local clock,ρi (Table 1). In the simula-
tion experiments, all nodes start at the same time with a
microtick counter value of 0 (i.e. the states of the local
clocks are in perfect agreement) and with an initial clock
rate correction termvRateCorrectionof 0. The clock syn-
chronization algorithm is used to determine the initial value
of vRateCorrection.

Assumptions. The following assumptions are made in the
course of the following considerations:

• A1 The duration of the network idle timeNIT is con-
sidered to be negligible compared to the duration of
the communication cycle.

3.2. Experiment 1: Stable clock drift rates

In Experiment 1, we determine the performance of the
clock synchronization algorithm in case of stable clock drift
rates. Each nodei starts with a clock drift rateρi(0) accord-
ing to Equation 1. All nodes maintain their initial drift rates
during simulation time.

5



zfi (t) = 0 → ρi(t) = ρi(0 ) (8)

The drift rates of all nodes remain constant and within
the shaded interval in Figure 7.

Figure 7. Experiment 1: Stable clock drift
rates

Figure 8 shows the results for Experiment 1.
After start of simulation the clocks are running free un-

til the first clock state correction (leftmost peak in Figure
8). All nodes apply new clock state correction values dur-
ing the NIT of odd communication cycles and new clock
rate correction values at the start of even communication
cycles. Both Cluster 1 and Cluster 2 reach a precision of 5
microticks (0,125 microseconds).

Figure 8. Experiment 1 - Precision

3.3. Experiment 2: Immediate clock drift rate
change

In Experiment 2, we determine the performance of the
clock synchronization algorithm in case of an immediate
clock drift rate change at one node. Each nodei starts with
a clock drift rateρi(0) according to Equation 1. At timetc10

(the start time of communication cycle 10), node 0 immedi-
ately changes its clock drift rate such that its frequencyf0

reaches the frequency margin (Figure 9). Node 0 maintains
this new drift rate till the end of simulation time.

zf0
(t) = 0 t < tc10

(9)

zf0
(t) = +1e − 4 t ≥ tc10

(10)

Figure 9. Experiment 2 - Immediate clock drift
rate change at Node 0

We know from Section 2.4 that clock state correction
is performed during the NIT of odd communication cycles
(i.e. immediately before the start of even communication
cycles). All nodes have performed clock state correction
during the NIT of communication cycle 9 (starting attNIT 9

immediately before the start of communication cycle 10
tc10

).
Till tc10

, the clock drift ratesρi(t) at all nodes have been
constant and have been compensated for by the clock rate
correction algorithm. A clock state correction has taken
place immediately beforetc10

. That means, that at time
tc10

, the deviation of all clocks shows a local minimum4.
This minimum is non-zero: the Impossibility Result in [10]
shows that it is not possible to internally synchronize the
clocks of an ensemble perfectly due to the non-zero com-
munication delay jitter in distributed systems. Even if all
local clocks are driven by perfect oscillators with zero drift
rate, this communication delay jitter causes an inaccuracyin
remote clock reading and consequently in the determination
of the clock state correction term.

offsetC(tc10
) = min > 0 (11)

The next clock state correction takes place during the
NIT of communication cycle 11 starting attNIT11

which
is 2 communication cycles (10000 MT = 0,01s) apart from
tc10

(Assumption A1).
The offset attNIT11

(the time of the next clock state cor-
rection) is equal to

offsetC (tNIT11
) = offsetC (tc10

) + zf0 (t) × 0 , 01 × Fs

(12)
The clock synchronization algorithm becomes unstable

(ΠC > 40) because

zf0 (t) × 0 , 01 × Fs = 40 → offsetC (tNIT11
) > 40

(13)

4The offset immediately after clock state correction is lessor equal to
the offset immediately before clock state correction.

6



Figure 10 shows the results for Experiment 2.

Figure 10. Experiment 2 - Precision

The immediate drift rate change at node 0 is indicated by
the leftmost rising edge in the precision diagrams in Figure
10. Within a duration of 2 communication cycles, the off-
set exceeds 40 microticks. The clock state correction attc12

reduces the offset (leftmost falling edge in Figure 10). How-
ever, the clock state correction leaves a remarkable offsetof
more than 10 microticks. This is because the clock drift rate
change of node 0 has not yet been compensated by the clock
rate correction algorithm (the clock rate correction terms
applied during communication cycle 10 and 11 are based on
clock readings from node 0 obtained during communication
cycle 8 and 9, i.e. before the clock drift rate change of node
0). New rate correction values obtained from clock read-
ings in communication cycle 10 and communication cycle
11 are applied attc12

. The rate correction values account
for the clock drift rate change of node 0 causing the off-
set to remain stable betweentc12

andtc14
, the time of the

next clock state correction (rightmost falling edge in Figure
10). At tc14

, the clock state correction brings the offset to a
minimum. The clock rate correction algorithm is also pro-
vided with accurate clock readings because the clock drift
rates of node 0 and the other nodes are stable. Fromtc14

,
the clock synchronization algorithm reaches a precision of
5 microticks. This is equal to the performance of the clock
synchronization algorithm in case of stable clock drift rates
presented in Section 3.2.

3.4. Experiment 3: Linear clock drift rate change

In Experiment 3a, we determine the performance of the
clock synchronization algorithm in case of linear clock drift
changes at one node. Each nodei starts with a clock drift
rateρi(0) according to Equation 1. At the start of commu-
nication cycle 10, node 0 changes its clock drift rate from
+5e − 6 to +1, 05e − 4 within a duration of 10 commu-
nication cycles. Node 0 maintains the changed drift rate of
+1, 05e− 4 till the end of simulation.

zf0
(t) = 0 t < tc10

(14)

zf0
(t) = +2e − 3t tc10

≤ t < tc20
(15)

zf0
(t) = +1e − 4t t ≥ tc20

(16)

Figure 11. Experiment 3a - Linear clock drift
rate change at Node 0

Figure 12 shows the results for Experiment 3a.
Although the final drift rate at node 0 is the same as in

Experiment 2 (where the clock synchronization algorithm
became unstable), the algorithm remains stable for both
configurations. This is because the clock drift rate at node
0 changes slowly enough such that the rate correction part
of the clock synchronization algorithm is able to keep the
cluster stable during the clock drift rate change.

In both configurations, the cluster precision deteriorates
during the drift rate change at node 0, starting attc10

. Fig-
ure 12 shows five peaks, one for each clock state correction
during the drift rate change at node 0 (which takes 10 com-
munication cycles). The clock rate correction part of the
algorithm ensures that the precision is bounded and better
than 16 microticks for both clusters. At timetc20

, the start
time of communication cycle 20, the clock drift rate change
is complete. From this point in time, the clock synchro-
nization algorithm is provided with accurate clock readings,
causing the cluster precision to improve to 5 microticks.
This is equal to the performance of the clock synchroniza-
tion algorithm in case of stable clock drift rates presentedin
Section 3.2.

Figure 12. Experiment 3a - Precision

In Experiment 3b, we determine the performance of the

7



clock synchronization algorithm in case of linear clock drift
rate changes at two nodes. Each nodei starts with a clock
drift rateρi(0) according to Equation 1. Like in Experiment
3a, at the start of communication cycle 10, node 0 changes
its clock drift rate from+5e−6 to +1, 05e−4 within a du-
ration of 10 communication cycles (Equation 16). Node 14
also changes its clock drift rate from−5e−6 to−1, 05e−4,
starting attc10

, within a duration of 10 communication cy-
cles.

zf14
(t) = 0 t < tc10

(17)

zf14
(t) = −2e − 3t tc10

≤ t < tc20
(18)

zf14
(t) = −1e − 4t t ≥ tc20

(19)

Figure 13. Experiment 3b - Linear clock drift
rate change at Node 0 and at Node 14

Figure 14 shows the results for Experiment 3b, which are
very similar to the results of Experiment 3a. The achieved
cluster precision during clock drift rate change at node 0
and node 14 is double the precision achieved in Experiment
3a. This is not surprising and due to the fact that the de-
viation between node 0 and node 14 during the drift rate
change is twice the deviation observed in Experiment 3a
because node 14 also changes its clock drift rate. This se-
lection of drift rate changes for node 0 and node 14 cause
the worst possible impact on cluster precision: node 0, the
fastest node, speeds up until it reaches one end of the fre-
quency stability interval. Node 14, the slowest node, slows
down until it reaches the other end of the frequency stability
interval. Both nodes touch the frequency margin at the same
time, which means that the offset introduced by the drift rate
change at both nodes is the maximum possible one.

At time tc20
, the start time of communication cycle 20,

the clock drift rate change at both nodes is complete. From
this point in time, the clock synchronization algorithm is
provided with accurate clock readings, causing the cluster
precision to improve to 5 microticks. Again, this is equal to
the performance of the clock synchronization algorithm in
case of stable clock drift rates presented in Section 3.2.

Figure 14. Experiment 3b - Precision

3.5. Experiment 4: Oscillating clock drift rate
change

In Experiment 4, we determine the performance of the
clock synchronization algorithm in case of oscillating clock
drift rate changes at two nodes. Each nodei starts with a
clock drift ρi(0) according to Equation 1. At the start of
communication cycle 10,

• node 0

– changes its clock drift rate from+5e − 6 to
+1, 05e − 4 within a duration of 10 communi-
cation cycles, then

– changes its clock drift rate from+1, 05e − 4 to
−9, 5e−5 within a duration of 20 communication
cycles, then

– changes its clock drift rate from−9, 5e − 5 to
+5e − 6 within a duration of 10 communication
cycles and

• node 14

– changes its clock drift rate from−5e − 6 to
−1, 05e − 4 within a duration of 10 communi-
cation cycles, then

– changes its clock drift rate from−1, 05e − 4 to
+9, 5e−5 within a duration of 20 communication
cycles, then

– changes its clock drift rate from+9, 5e − 5 to
−5e − 6 within a duration of 10 communication
cycles.

Figure 16 shows the results for Experiment 4.
The selection of the node drift rate changes at node 0 and

node 14 ensures that both nodes ”visit” all allowed clock
drift rates within the frequency margin of 210 ppm (Ta-
ble 1). Like in Experiment 3b, this selection of drift rate
changes also causes the worst possible impact on cluster
precision.

8



Figure 15. Experiment 4 - Oscillating clock
drift rate change at Node 0 and at Node 14

In both configurations, the cluster precision deteriorates
during the drift rate change at node 0 and node 14, starting at
tc10

. Figure 16 shows 5 peaks followed by a local minimum
at timetc20

, the point in time where the clock drift rates stop
to diverge. The next 10 peaks after the first local minimum
denote the time betweentc20

andtc40
, where the clock drift

rates of both nodes converge (Figure 15), become equal at
tc30

and diverge again aftertc30
till tc40

. It is interesting
to note that the precision betweentc20

andtc30
(converging

node drift rates) is not better than the precision betweentc30

and tc40
(diverging node drift rates). The performance of

the clock state correction part of the algorithm is constant
during the whole time interval betweentc20

and tc40
(the

offset immediately after a clock state correction,indicated
by the falling edges of the precision diagram in Figure 16).
However, the clock rate correction part of the algorithm is
provided with inaccurate clock rate estimations due to the
node drift rate changes during this time interval between
tc20

andtc40
. The five last peaks denote the time between

tc40
andtc50

, where the clock drift rates of both nodes con-
verge again (Figure 15) until they return to the values that
they had at the start of simulation.

The clock rate correction part of the algorithm ensures
that the precision is bounded and better than 25 microticks
for cluster 1 and better than 36 microticks for cluster 2 dur-
ing the time interval betweentc10

andtc50
, the time where

node 0 and node 14 change their clock drift rates as de-
scribed above. At timetc50

, the clock drift rate changes at
node 0 and node 14 are complete. From this point in time,
the clock synchronization algorithm is provided with accu-
rate clock readings, causing the cluster precision to improve
to 5 microticks, which is is equal to the performance of the
clock synchronization algorithm in case of stable clock drift
rates presented in Section 3.2.

Figure 16. Experiment 4 - Precision

4. Conclusion

This paper presents a case study that aims at the as-
sessment of performance and stability of the Flexray clock
synchronization algorithm by means of simulation experi-
ments.

The following lessons have been learned from the exper-
iments:

• The achievable precision within a cluster is nearly in-
dependent from the clock drift rates of the different
nodes if these clock drift rates are stable. Even if the
clock drift rates of two nodes differ by the maximum
possible value within the pre-defined frequency stabil-
ity interval, the clock rate correction part of the al-
gorithm compensates these clock rate differences and
reaches a stable and minimum precision.

• The algorithm is quite robust in the presence of clock
drift rate changes. In case of continous and linear
clock drift rate changes that do not exceed the pre-
defined frequency stability interval, the clock rate cor-
rection part of the algorithm compensates for these rate
changes. However, cluster precision may deteriorate
remarkably during the clock drift rate change. The de-
gree of precision deterioration mainly depends on the
speed of the clock drift rate change as shown in the
experiments.

• The experiments have also shown that immediate clock
drift rate changes may de-stabilize the clock synchro-
nization algorithm, even if the clock drift rate differ-
ences are within the pre-defined frequency stability in-
terval. Whether the algorithm remains stable or not
with regard to the given cluster configuration depends
on the degree of the clock drift rate change.

The Flexray clock synchronization algorithm is suited to
solve the clock synchronization problem in the presence of
changing clock drift rates with regard to the achievable pre-
cision within a single cluster. The focus of the investiga-
tions was on single-cluster systems with no synchronization

9



to an external time source (e.g. GPS [4] time). The in-
creasing demand on fault-tolerant real-time applicationsin
the automotive domain, like the emerging market for drive-
by-wire systems, may also increase the complexity of the
control systems deployed. One solution to cope with the
increasing complexity of control systems isclustering, i.e.
to build complex systems from single clusters into multi-
cluster systems.

For this reason, further investigations of the algorithm
are of interest:

• The cluster drift rate (i.e. the drift rate of the inter-
nally synchronized global time base within a cluster)
depends on the average clock drift rate of the nodes
that send synchronization frames. The clock drift rates
of these nodes in turn depend on the frequency stabil-
ity of the oscillators deployed. The impact of common
mode effects on the crystal oscillators with regard to
the cluster drift rate is an interesting topic of further
research.

• The cluster drift rates of independent clusters may dif-
fer significantly. If synchronous operation is desired
among an ensemble of clusters in a multi-cluster sys-
tem, it is necessary to synchronize the global times at
the different clusters by means of external clock syn-
chronization, i.e. to synchronize the global time of a
cluster to an external time source. The Flexray pro-
tocol provides means for external clock synchroniza-
tion. The assessment of stability and performance of
the Flexray clock synchronization algorithm in multi-
cluster systems is another interesting topic of further
research.

References

[1] E. Anceaume and I. Puaut. Performance Evaluation of Clock
Synchronization Algorithms. Technical Report 3526, Insti-
tut de Recherche en Informatique et Systèmes Aléatoires,
www.irisa.fr, October 1998.

[2] Hewlett-Packard Company. Fundamentals of Quartz Oscil-
lators. HP application note 200-2, 1997.

[3] Flaviu Cristian, Houtan Aghili, and Ray Strong. Clock Syn-
chronization in the Presence of Omission and Performance
Failures, and Processor Joins. In Zhonghua Yang and T. An-
thony Marsland, editors,Global States and Time in Dis-
tributed Systems, IEEE Computer Society Press. 1994.

[4] P.H. Dana. Global Posinitioning System (GPS) time dissem-
ination for real-time applications.Real-Time Systems, 12:9–
40, January 1997.

[5] Flexray. FlexRay Communications System Protocol Spec-
ification Version 2.1. Specification, FlexRay Consortium,
2005.

[6] J.Y. Halpern, B. Simons, R. Strong, and D. Dolev. Fault-
tolerant Clock Synchronization. InProceedings of the 3rd
ACM Symposium on Principles of Distributed Computing,
pages 89–102, 1984.

[7] A. Hanzlik. SIDERA - A Simulation Model for Time-
Triggered Distributed Systems. Research Report 62/2005,
Technische Universität Wien, Institut für Technische Infor-
matik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2005.

[8] H. Kopetz. Real-Time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publish-
ers, 1997.

[9] J. Lundelius and N. Lynch. A new Fault-tolerant Algorithm
for Clock Synchronization. InProceedings of the 3rd an-
nual ACM symposium on Principles of Distributed Comput-
ing, pages 75–88. ACM, 1984.

[10] L. Lundelius and N. Lynch. An Upper and Lower Bound for
Clock Synchronization.Information and Control, 62:199–
204, 1984.

[11] P. Ramanathan, K.G. Shin, and R.W. Butler. Fault-tolerant
Clock Synchronization in Distributed Systems.IEEE Com-
puter, 23(10):33–42, October 1990.

[12] F. A. Schreiber. Is Time a Real Time? An Overview of
Time Ontology in Informatics. In W. A. Halang and A. D.
Stoyenko, editors,Real Time Computing, pages 283–307.
Springer, Berlin, Heidelberg, 1994.

[13] T.K. Srikanth and S. Toueg. Optimal clock synchronization.
Journal of the ACM, 34(3):626–645, 1987.

[14] Wilfried Steiner and Michael Paulitsch. The Transition
from Asynchronous to Synchronous System Operation: An
Approach for Distributed Fault-Tolerant Systems (Including
Simulation). Research Report 26/2001, Technische Univer-
sität Wien, Institut für Technische Informatik, Treitlstr. 1-
3/182-1, 1040 Vienna, Austria, 2001.

10


